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A highly efficient resolution protocol
for 2 0-halo-a-methylbenzylamines
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Abstract—A highly efficient resolution protocol for 2 0-halo-a-methylbenzylamines is reported. Commercially available and inexpen-
sive mandelic acid can be used for the resolution of the Br, Cl, and F derivatives to >99% de in a single crystallization. In addition,
the reduction of acetophenone oximes using borane-dimethylsulfide is presented as a method for the preparation of racemic amine
precursors.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The process of resolving enantiomers through diastereo-
meric salt formation is a widely used method for obtain-
ing optically enriched acids or bases.1 As part of an
ongoing development program, we required large quanti-
ties of 2 0-halo-substituted a-methylbenzylamines (Fig. 1,
1a–c) in high optical purity.

There are numerous asymmetric synthetic strategies that
afford enantiomerically enriched a-methylbenzylam-
ines.2 However, from our standpoint, a resolution-based
process was more practical for two reasons: (1) the de-
gree of enantiomeric enrichment required for our pur-
poses (>99% ee) might exceed the capacity of available
asymmetric methods. In this case, a secondary salt-
based chiral upgrade would still be required, and (2) if
a relatively inexpensive resolving agent could be found,
X

NH2

X = Br, Cl, F

1a-c

Figure 1. 2 0-Halo-a-methylbenzylamines (1a–c).
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the ease and cost of resolving the racemic amine might
outweigh the benefits of an asymmetric synthesis.1b

The literature contains many reports of the resolution
of various a-methylbenzylamines, including the use of
chiral acids such as 6-(1,2:3,4-di-O-isopropylidene-a-DD-
galactopyranosyl)hydrogen phthalate,3 isopropylidene
glycerol hydrogen phthalate,4 3,4-dihydro-2H-1-benzo-
pyran-2-carboxylic acid,5 mandelic acid,6 substituted
mandelic acids,6a,7 tartaric acid,8,9 N-Ac-LL-leucine deriv-
atives,10 and malic acid.9b Surprisingly, there are few
examples of the resolution of 2 0-halo-a-methylbenzyl-
amines,3–5,6e,10 and those examples produced only modest
enantioselectivity, or required multiple crystallizations to
achieve high levels of enantioenrichment. Our goal was
to develop a general and efficient resolution protocol,
employing a single resolving agent that could be
applied to the series depicted in Figure 1.
2. Results and discussion

At the outset, a general and mild approach was needed
to obtain large quantities of racemic 2 0-halo-substituted
a-methylbenzylamines, as racemate was not commer-
cially available. There is a large body of literature
regarding the preparation of racemic versions of these
compounds. Starting from the ketone, reductive amina-
tion, including the Leuckart reaction,11 can be used.
Oximes and oxime ethers can be converted to the corre-
sponding amine utilizing both catalytic and non-cata-
lytic transfer hydrogenation agents,12 lithium
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aluminum hydride,13 and various methods which use
combinations of metals and hydride reducing agents.14

Borane-based reduction methods have been reported
less frequently in the literature,15 despite the fact that
they are mild in comparison to other reduction proto-
cols. We chose this as the starting point for our studies
since we expected minimal reduction of the carbon–halo-
gen bond with these relatively mild reagents.

Table 1 shows the results of oxime formation using an
optimized procedure for the condensation of the corre-
sponding ketone (2a–c) with O-benzylhydroxylamine,
which was found to be the optimal oxime substrate for
reduction to the amine. Both cis and trans regioisomers
were obtained as products, and notably were used with-
out further purification following an aqueous workup.

With the oximes in hand, investigations into the reduc-
tion focused on utilizing mild boron reagents to produce
Table 1. Synthesis of 2-halo-O-benzylacetophenone oximes 3a–c

X

O
O NH2

.HCl

NaOAc (1.1 equiv)

(1.1 equiv)

EtOH:H2O (2.5:1), 80 °C
2 3

X

N
OBn

Entry Ketone X Oxime Yielda (%)

1 2a Br 3a 96
1 2b Cl 3b 96
3b 2c F 3c 96

a Isolated yields.
b 170 g reaction.

Table 3. Results of initial resolving agent screen

F

NH2 Acid (1 equiv)
Solvent (0.36 M)

70 °C-rt

1c

Entry Acid Solv

1 (S)-(+)-Mandelic acid EtO
2 LL-Malic acid EtO
3 (S)-(+)-2-Phenylglycine EtO
4 (S)-(�)-2-Pyrrolidine-5-carboxylic acid EtO
5 N-Acetyl-LL-phenylalanine EtO
6 N-Acetyl-LL-leucine EtO
7 (S)-(�)-2-Pyrrolidine-5-carboxylic acid EtO
8 (S)-(�)-2-Pyrrolidine-5-carboxylic acid MeO
9 (S)-(+)-Mandelic acid MeO

10 (S)-(+)-Mandelic acid EtO
11 (S)-(+)-Mandelic acid IPA
12 (S)-(+)-Mandelic acid EtO
13 (S)-(+)-Mandelic acid EtO

a Determined by chiral GC.
b No crystallization observed.
the racemic amine. It was found that 2 equiv of borane-
dimethylsulfide effected the reduction efficiently and pre-
served the aryl–halogen bond, producing the desired
amine in good yields (Table 2). An acid/base extractive
workup yielded the desired amine without need for fur-
ther purification. This reduction process was demon-
strated on scale with 287 g of 2-fluoroacetophenone
oxime (3c) (Table 2, entry 3), and found to produce
amine with equivalent yield and quality to smaller scale
experiments.

With an efficient process for racemic amine in hand, a
preliminary screen of several commercially available chi-
ral resolving agents was performed with 2 0-fluoro-a-
methylbenzylamine (Table 3). Ethyl acetate was chosen
as the initial screening solvent to evaluate any solubility
difference between the diastereomeric salts while maxi-
mizing crystallization. In some cases, methanol was em-
ployed as a co-solvent to facilitate dissolution of the acid
Table 2. Synthesis of a-methylbenzylamines 1a–c

X

N
OBn

1) BH3
. DMS (2 equiv)

 THF, 24 h

2) 4 M HCl X

NH2

3 1

Entry Oxime X Temperature (�C) Amine Yielda (%)

1 3a Br rt 1a 72
2 3b Cl rt 1b 68
3b 3c F 40 1c 66

a Isolated yields, average of two reactions.
b 287 g reaction.

F

NH2

4c

HO
R

O.

ent Yield (%) dea (%)

Ac NA 5.7
Ac NA 0.4
Ac/MeOH (5:3), 0.22 M NA NAb

Ac NA 6.7
Ac/MeOH (10:3), 0.27 M NA 0.7
Ac/MeOH (10:3), 0.27 M NA 0.7
H NA NAb

H NA NAb

H NA NAb

H 22 93
41 89

H/IPA (3:2), 0.72 M 39 98
H/IPA (1:1), 0.72 M 34 99



Table 4. Expanded screen of scope using mandelic acid

(S)-(+)-Mandelic-
Acid (1 equiv)

Solvent, 70 °C-rt

1 4

NH2

X X

HO
O

HO

.
NH2

Entry X Solvent Yield (%) dea (%)

1 Cl IPA/EtOH (1:1), 0.32 M 25 87
2 Cl IPA, 0.4 M 37 45
3 Cl IPA/EtOH (1:6:1), 0.4 M 34 77
4 Cl IPA/EtOH (1:6:1), 0.4 Mb 29 98
5 Cl IPA/EtOH (1:7:1), 0.32 Mb 25 99
6 Br IPA/EtOH (1:1), 0.25 M NA NAc

7 Br IPA, 0.5 M NA NAc

8 Br IPAC, 0.5 M 67 9.6
9 Br IPAC/EtOH (3:1), 0.5 M 34 92

10 Br IPAC/EtOH (3:1), 0.33 Mb 37 94
11 Br IPAC/EtOH (3:1), 0.25 Mb 35 99

a Determined by chiral GC.
b The reaction was first cooled to 30 �C and slurried for 24 h before

cooling to 23 �C.
c No crystallization observed.
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Figure 3. Solubility and nucleation curves for (R)-2 0-chloro-a-methyl-
benzylamineÆ(S)-mandelate salt (4b) in 1.7:1 IPA/EtOH.
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prior to the addition of the amine. As seen in Table 3
(entries 1–6), initial upgrades were poor. However, both
mandelic acid and 2-pyrrolidine-5-carboxylic acid affor-
ded modest levels of enrichment, revealing a difference
in solubility between the two diastereomeric salts gener-
ated with these two resolving agents.16

The initial hits using mandelic acid and 2-pyrrolidine-5-
carboxylic acid were subjected to a more extensive sol-
vent screen (Table 3, entries 7–10), which revealed man-
delic acid to be a very effective resolving agent in
ethanol. The conditions for resolution utilizing mandelic
acid were optimized to afford a diastereoenrichment of
99% in a single crystallization from ethanol and iso-
propyl alcohol (entry 13). The solubility and nucleation
curves were generated for this salt and revealed a high
nucleation temperature and narrow metastable zone
(Fig. 2).

Application of these conditions to the other 2 0-halo-a-
methylbenzylamines of interest revealed that the optimal
conditions for 2 0-fluoro-a-methylbenzylamine did not
directly translate to the other amine substrates. How-
ever, upon further optimization for each derivative,
mandelic acid continued to be an outstanding resolving
agent (Table 4).

Qualitatively, nucleation and crystallization for the 2 0-
chloro derivative were observed to be slower than that
of the 2 0-fluoro series, and to take place at a lower tem-
perature. This was quantified by the solubility and
nucleation curves for this salt (Fig. 3), which confirmed
that nucleation of the (R)-2 0-chloro-a-methylbenzyl-
amineÆ(S)-mandelate salt only commences at 30 �C at
concentrations relevant to the resolution protocol. It
was expected that holding the mixture at 30 �C would
promote nucleation of the desired diastereomer and sub-
sequent crystallization within the metastable zone, while
still maintaining temperature above the solubility limit
of the undesired diastereomer. The impact of this hold
time is demonstrated by entries 3 and 4 in Table 4, which
show that holding the mixture at 30 �C for crystalliza-
tion results in a substantial increase in % de with mini-
mal impact in % yield.
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Figure 2. Solubility and nucleation curves for (S)-2 0-fluoro-a-methyl-
benzylamineÆ(S)-mandelate salt (4c) in 1:1 IPA/EtOH.
For the 2 0-bromo derivative, use of isopropyl acetate
(IPAC) as an antisolvent in combination with ethanol
was required to achieve the optimal balance of enrich-
ment and recovery. The solubility and nucleation curves
for this salt are shown in Figure 4. Although the nucle-
ation temperature is relatively high for this salt, in prac-
tice, nucleation was slow. Again, holding the
crystallization at 30 �C allowed sufficient nucleation
time at a slightly elevated temperature, affording very
good % de’s in a single crystallization.

Final optimized conditions as well as absolute configu-
rations for the entire amine series are shown in Table
5. Under the optimized conditions,17 these resolutions
achieve high diastereoenrichments and good yields in a
single crystallization, employing a readily available
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Figure 4. Solubility and nucleation curves for (R)-2 0-bromo-a-methyl-
benzylamineÆ(S)-mandelate salt (4a) in 3:1 IPAC/EtOH.
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and inexpensive ($25/kg)18 resolving agent. Demonstra-
tion of this process on larger scale produced 76.4 g of 2 0-
fluoro-a-methylbenzylamine-mandelic acid salt (4c),
with the expected yield and diastereoselectivity (Table
5, entry 3).19

In conclusion, the borane reduction of 2 0-haloacetophe-
none oximes has been demonstrated to be a viable route
for large scale generation of racemic a-methylbenzylam-
ines. These materials can be resolved to >99% de in a
single crystallization using commercially available and
inexpensive mandelic acid.
Table 5. Optimized resolutions of 2 0-halo-a-methylbenzylamines (la–c)

(S)-(+)-Mandelic- 
Acid (1 equiv)

Solvent, 70 °C-rt
1

NH2

X

a

b

Entry Amine Solvent Pr

1

Br

NH2

1a IPAC/EtOH (3:1), 0.25 M 4a

2

Cl

NH2

1b
IPA/EtOH (1:7:1), 0.32 M 4b

3e

F

NH2

1c
IPA/EtOH (1:1), 0.72 M 4c

a See Ref. 17.
b Entry 1: 60 �C–rt, held at 30 �C for 24 h before cooling to 23 �C.
c Isolated yields, average of two reactions, with a maximum yield of 50%.
d Determine by chiral GC, average of two resolutions. See Supplementary d
e Performed with 108 g of racemate.
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